Fingolimod protects against experimental necrotizing enterocolitis by regulating intestinal T cell differentiation

芬戈莫德通过调节肠道 T 细胞分化预防实验性坏死性小肠结肠炎

阅读:9
作者:Yao Fu, Li-Ping Chen, Peng Li, Zhi-Bao Lv

Background

Necrotizing enterocolitis (NEC)-the leading cause of neonatal death-has been shown to be associated with an excessive inflammatory response of the intestines. Fingolimod has shown efficacy in treating many inflammatory diseases. In this study, we aimed to explore the protective effects of fingolimod on a mouse model of NEC.

Conclusions

Fingolimod can protect neonatal mice from NEC-related death by ameliorating intestinal injury and attenuating excessive inflammatory responses. These effects may be mediated through an improved Th17/Treg balance, which may result from direct and indirect effects of fingolimod on T cell infiltration and macrophage differentiation.

Methods

Experimental NEC was induced in 5-day-old C57BL/6 neonatal mice. Many methods include Hematoxylin and eosin (H&E), immunofluorescence staining, polymerase chain reaction (PCR) and western blot were used to evaluate the degreed of inflammation of NEC. A model of T-cell co-culture system in vitro was used to explain the way Fingolimod acted on T cell. We also detected the NEC associated brain injury by immunofluorescence staining.

Results

Fingolimod treatment ameliorated NEC-induced intestinal injury, reduced inflammatory T cell infiltration, and regulated the balance between T helper 17 (Th17) and regulatory T cells in intestinal tissues. In addition, fingolimod treatment was found to blunt the pro-inflammatory phenotype of activated macrophages and decrease interleukin-17 (IL-17) secretion. Fingolimod treatment also ameliorated NEC-induced neuroinflammation. Conclusions: Fingolimod can protect neonatal mice from NEC-related death by ameliorating intestinal injury and attenuating excessive inflammatory responses. These effects may be mediated through an improved Th17/Treg balance, which may result from direct and indirect effects of fingolimod on T cell infiltration and macrophage differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。