Study of novel NARS2 variants in patient of combined oxidative phosphorylation deficiency 24

联合氧化磷酸化缺陷患者中新型 NARS2 变异体的研究 24

阅读:6
作者:Yi Zhang, Xiangyue Zhao, Yufei Xu, Lina Chen, Niu Li, Ruen Yao, Xiumin Wang, Jian Wang, Tingting Yu

Background

NARS2 catalyzes the attachment of asparagine amino acids to mitochondrial tRNAAsn and is critical for efficient mitochondrial protein synthesis. Biallelic variants in NARS2 are associated with combined oxidative phosphorylation deficiency 24 (COXPD24) and autosomal recessive deafness-94.

Conclusions

The patient was diagnosed with COXPD24 caused by novel NARS2 variations. The cardiac dysfunction is identified for the first time. In vitro study revealed impairment of variants on NARS2 expression. These data enrich our knowledge regarding the phenotypic and genotypic spectra of NARS2.

Methods

Patient information was obtained after recruitment. Genetic tests were performed using whole exome sequencing (WES) and Sanger sequencing. Structure prediction was based on the RaptorX and SWISS-MODEL platforms. The mRNA analysis of paternal variant was performed. Expression levels and dimerization of wild-type (WT) and mutant NARS2 were detected in human embryonic kidney (HEK) 293T cells. Mitochondrial localization of NARS2 variants was determined using immunofluorescence staining.

Results

The patient presented early onset generalized epilepsy, myoclonic seizures, severe bilateral hearing impairment and affected liver and heart. WES identified two compound heterozygous variants in NARS2: c.1141A>G/p.Asn381Asp and c.1290G>C/p.Trp430Cys. In silico analysis predicted that both variants would cause significant and pathogenic changes in secondary structure. NARS2 c.1290G>C is a variant at the first nucleotide of an exon, a location thought to affect mRNA splicing. Although transcriptional experiments did not identify aberrant splicing, we observed a lower proportion of transcripts from the NARS2 c.1290G>C variant. An in vitro experiment showed that both variants impaired NARS2 expression, while mitochondrial localization and dimerization remained unaffected. Conclusions: The patient was diagnosed with COXPD24 caused by novel NARS2 variations. The cardiac dysfunction is identified for the first time. In vitro study revealed impairment of variants on NARS2 expression. These data enrich our knowledge regarding the phenotypic and genotypic spectra of NARS2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。