p11 in Cholinergic Interneurons of the Nucleus Accumbens Is Essential for Dopamine Responses to Rewarding Stimuli

伏隔核胆碱能中间神经元中的 p11 对多巴胺对奖励刺激的反应至关重要

阅读:7
作者:Y Hanada, Y Kawahara, Y N Ohnishi, T Shuto, M Kuroiwa, N Sotogaku, P Greengard, Y Sagi, A Nishi

Abstract

A recent study showed that p11 expressed in cholinergic interneurons (CINs) of the nucleus accumbens (NAc) is a key regulator of depression-like behaviors. Dopaminergic neurons projecting to the NAc are responsible for reward-related behaviors, and their function is impaired in depression. The present study investigated the role of p11 in NAc CINs in dopamine responses to rewarding stimuli. The extracellular dopamine and acetylcholine (ACh) levels in the NAc were determined in freely moving male mice using in vivo microdialysis. Rewarding stimuli (cocaine, palatable food, and female mouse encounter) induced an increase in dopamine efflux in the NAc of wild-type (WT) mice. The dopamine responses were attenuated (cocaine) or abolished (food and female mouse encounter) in constitutive p11 knock-out (KO) mice. The dopamine response to cocaine was accompanied by an increase in ACh NAc efflux, whereas the attenuated dopamine response to cocaine in p11 KO mice was restored by activation of nicotinic or muscarinic ACh receptors in the NAc. Dopamine responses to rewarding stimuli and ACh release in the NAc were attenuated in mice with deletion of p11 from cholinergic neurons (ChAT-p11 cKO mice), whereas gene delivery of p11 to CINs restored the dopamine responses. Furthermore, chemogenetic studies revealed that p11 is required for activation of CINs in response to rewarding stimuli. Thus, p11 in NAc CINs plays a critical role in activating these neurons to mediate dopamine responses to rewarding stimuli. The dysregulation of mesolimbic dopamine system by dysfunction of p11 in NAc CINs may be involved in pathogenesis of depressive states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。