Different growth and metastatic phenotypes associated with a cell-intrinsic change of Met in metastatic melanoma

转移性黑色素瘤中不同的生长和转移表型与 Met 的细胞内在变化有关

阅读:7
作者:Eri Adachi, Katsuya Sakai, Takumi Nishiuchi, Ryu Imamura, Hiroki Sato, Kunio Matsumoto

Abstract

A dynamic phenotypic change contributes to the metastatic progression and drug resistance in malignant melanoma. Nevertheless, mechanisms for a phenotypic change have remained to be addressed. Here, we show that Met receptor expression changes in a cell-autonomous manner and can distinguish phenotypical differences in growth, as well as in metastatic and drug-resistant characteristics. In metastatic melanoma, the cells are composed of Met-low and Met-high populations. Met-low populations have stem-like gene expression profiles, are resistant to chemotherapeutic agents, and have shown abundant angiogenesis and rapid tumor growth in subcutaneous inoculation. Met-high populations have a differentiated phenotype, are relatively resistant to B-RAF inhibitor, and are highly metastatic to the lungs. Met plays a definitive role in lung metastasis because the lung metastasis of Met-high cells requires Met, and treatment of mice with the Met-containing exosomes from Met-high cells facilitates lung metastasis by Met-low cells. Clonal cell fate analysis showed the hierarchical phenotypical changes from Met-low to Met-high populations. Met-low cells either showed self-renewal or changed into Met-high cells, whereas Met-high cells remained Met-high. Clonal transition from Met-low to Met-high cells accompanied changes in the gene expression profile, in tumor growth, and in metastasis that were similar to those in Met-high cells. These findings indicate that malignant melanoma has the ability to undergo phenotypic change by a cell-intrinsic/autonomous mechanism that can be characterized by Met expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。