Heparanase augments epidermal growth factor receptor phosphorylation: correlation with head and neck tumor progression

肝素酶增强表皮生长因子受体磷酸化:与头颈部肿瘤进展的相关性

阅读:4
作者:Victoria Cohen-Kaplan, Ilana Doweck, Inna Naroditsky, Israel Vlodavsky, Neta Ilan

Abstract

Heparanase is an endoglycosidase that specifically cleaves heparan sulfate side chains, a class of glycosaminoglycans abundantly present in the extracellular matrix and on the cell surface. Heparanase activity is strongly implicated in tumor metastasis attributed to remodeling of the subepithelial and subendothelial basement membranes, resulting in dissemination of metastatic cancer cells. Moreover, heparanase up-regulation was noted in an increasing number of primary human tumors, correlating with tumors larger in size, increased microvessel density, and reduced postoperative survival rate, implying that heparanase function is not limited to tumor metastasis. This notion is supported by recent findings revealing induction of signaling molecules (i.e., Akt, p38) and gene transcription [i.e., tissue factor, vascular endothelial growth factor (VEGF)] by enzymatically-inactive heparanase. Here, we provide evidence that active and inactive heparanase proteins enhance epidermal growth factor receptor (EGFR) phosphorylation. Enhanced EGFR phosphorylation was associated with increased cell migration, cell proliferation, and colony formation, which were attenuated by Src inhibitors. Similarly, heparanase gene silencing by means of siRNA was associated with reduced Src and EGFR phosphorylation levels and decreased cell proliferation. Moreover, heparanase expression correlated with increased phospho-EGFR levels and progression of head and neck carcinoma, providing a strong clinical support for EGFR modulation by heparanase. Thus, heparanase seems to modulate two critical systems involved in tumor progression, namely VEGF expression and EGFR activation. Neutralizing heparanase enzymatic and nonenzymatic functions is therefore expected to profoundly affect tumor growth, angiogenesis, and metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。