Pituitary adenylate cyclase activating polypeptide (PACAP) signalling exerts chondrogenesis promoting and protecting effects: implication of calcineurin as a downstream target

垂体腺苷酸环化酶激活肽 (PACAP) 信号发挥促进和保护软骨形成的作用:钙调神经磷酸酶作为下游靶点的含义

阅读:5
作者:Tamás Juhász, Csaba Matta, Éva Katona, Csilla Somogyi, Roland Takács, Pál Gergely, László Csernoch, Gyorgy Panyi, Gábor Tóth, Dóra Reglődi, Andrea Tamás, Róza Zákány

Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP) is an important neurotrophic factor influencing differentiation of neuronal elements and exerting protecting role during traumatic injuries or inflammatory processes of the central nervous system. Although increasing evidence is available on its presence and protecting function in various peripheral tissues, little is known about the role of PACAP in formation of skeletal components. To this end, we aimed to map elements of PACAP signalling in developing cartilage under physiological conditions and during oxidative stress. mRNAs of PACAP and its receptors (PAC1,VPAC1, VPAC2) were detectable during differentiation of chicken limb bud-derived chondrogenic cells in micromass cell cultures. Expression of PAC1 protein showed a peak on days of final commitment of chondrogenic cells. Administration of either the PAC1 receptor agonist PACAP 1-38, or PACAP 6-38 that is generally used as a PAC1 antagonist, augmented cartilage formation, stimulated cell proliferation and enhanced PAC1 and Sox9 protein expression. Both variants of PACAP elevated the protein expression and activity of the Ca-calmodulin dependent Ser/Thr protein phosphatase calcineurin. Application of PACAPs failed to rescue cartilage formation when the activity of calcineurin was pharmacologically inhibited with cyclosporine A. Moreover, exogenous PACAPs prevented diminishing of cartilage formation and decrease of calcineurin activity during oxidative stress. As an unexpected phenomenon, PACAP 6-38 elicited similar effects to those of PACAP 1-38, although to a different extent. On the basis of the above results, we propose calcineurin as a downstream target of PACAP signalling in differentiating chondrocytes either in normal or pathophysiological conditions. Our observations imply the therapeutical perspective that PACAP can be applied as a natural agent that may have protecting effect during joint inflammation and/or may promote cartilage regeneration during degenerative diseases of articular cartilage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。