Multiplexed Molecular Imaging of Biomarker-Targeted SERS Nanoparticles on Fresh Tissue Specimens with Channel-Compressed Spectrometry

利用通道压缩光谱法对新鲜组织样本上的生物标志物靶向 SERS 纳米粒子进行多路复用分子成像

阅读:5
作者:Soyoung Kang, Yu Wang, Nicholas P Reder, Jonathan T C Liu

Abstract

Biomarker-targeted surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have been explored as a viable option for targeting and imaging multiple cell-surface protein biomarkers of cancer. While it has been demonstrated that this Raman-encoded molecular imaging (REMI) technology may potentially be used to guide tumor-resection procedures, the REMI strategy would benefit from further improvements in imaging speed. Previous implementations of REMI have utilized 1024 spectral channels (camera pixels) in a commercial spectroscopic CCD to detect the spectral signals from multiplexed SERS NPs, a strategy that enables accurate demultiplexing of the relative concentration of each NP "flavor" within a mixture. Here, we investigate the ability to significantly reduce the number of spectral-collection channels while maintaining accurate imaging and demultiplexing of up to five SERS NP flavors, a strategy that offers the potential for improved imaging speed and/or detection sensitivity in future systems. This strategy was optimized by analyzing the linearity of five multiplexed flavors of SERS NPs topically applied on tissues. The accuracy of this binning approach was then validated by staining tumor xenografts and human breast tumor specimens with a mixture of five NP flavors (four targeted NPs and one untargeted NP) and performing ratiometric imaging of specific vs. nonspecific NP accumulation. We demonstrate that with channel-compressed spectrometry using as few as 16 channels, it is possible to perform REMI with five NP flavors, with < 20% error, at low concentrations (< 10 pM) that are relevant for clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。