MiR-101-containing extracellular vesicles bind to BRD4 and enhance proliferation and migration of trophoblasts in preeclampsia

含有 miR-101 的细胞外囊泡与 BRD4 结合并增强先兆子痫中滋养细胞的增殖和迁移

阅读:6
作者:Jinhui Cui, Xinjuan Chen, Shuo Lin, Ling Li, Jianhui Fan, Hongying Hou, Ping Li

Background

Preeclampsia (PE) is a frequently occurring pregnancy disorder in the placenta, which

Conclusion

In summary, EV-encapsulated miR-101 promoted proliferation and migration of placental trophoblasts through the inhibition of BRD4 expression via NF-κB/CXCL11 inactivation.

Methods

Human umbilical cord mesenchymal stem cell (HUCMSC) and HUCMSC-derived EVs were isolated and cultured, after which EV characterization was carried out using PKH67 staining. In silico analyses were adopted to predict the downstream target genes of miR-101, and dual luciferase reporter gene assay was applied to validate the binding affinity. Furthermore, loss- and gain-of-function approaches were adopted to determine the role of miR-101 and bromodomain-containing protein 4 (BRD4) in trophoblast proliferation and invasion using EDU staining and transwell assay. In addition, a rat model of PE was established to verify the function of EV-encapsulated miR-101 in vivo.

Results

Placental tissues obtained from PE patients presented with downregulated miR-101 expression and upregulated BRD4 and CXCL11 expression. EV-encapsulated miR-101 from HUCMSCs could be delivered into the trophoblast HTR-8/SVneo cells, thus enhancing proliferation and migration of trophoblasts. Mechanically, miR-101 targeted and negatively regulated BRD4 expression. BRD4 knockdown promoted the proliferation and migration of trophoblasts by suppressing NF-κB/CXCL11 axis. EV-encapsulated miR-101 from HUCMSCs also reduced blood pressure and 24 h urine protein in vivo, thereby ameliorating PE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。