An optimized histochemical method to assess skeletal muscle glycogen and lipid stores reveals two metabolically distinct populations of type I muscle fibers

一种评估骨骼肌糖原和脂质储量的优化组织化学方法揭示了两种代谢不同的 I 型肌纤维群

阅读:5
作者:Clara Prats, Alba Gomez-Cabello, Pernille Nordby, Jesper L Andersen, Jørn W Helge, Flemming Dela, Otto Baba, Thorkil Ploug

Abstract

Skeletal muscle energy metabolism has been a research focus of physiologists for more than a century. Yet, how the use of intramuscular carbohydrate and lipid energy stores are coordinated during different types of exercise remains a subject of debate. Controversy arises from contradicting data from numerous studies, which used different methodological approaches. Here we review the "pros and cons" of previously used histochemical methods and describe an optimized method to ensure the preservation and specificity of detection of both intramyocellular carbohydrate and lipid stores. For optimal preservation of muscle energy stores, air drying cryosections or cycles of freezing-thawing need to be avoided. Furthermore, optimization of the imaging settings in order to specifically image intracellular lipid droplets stained with oil red O or Bodipy-493/503 is shown. When co-staining lipid droplets with associated proteins, Bodipy-493/503 should be the dye of choice, since oil red O creates precipitates on the lipid droplets blocking the light. In order to increase the specificity of glycogen stain, an antibody against glycogen is used. The resulting method reveals the existence of two metabolically distinct myosin heavy chain I expressing fibers: I-1 fibers have a smaller crossectional area, a higher density of lipid droplets, and a tendency to lower glycogen content compared to I-2 fibers. Type I-2 fibers have similar lipid content than IIA. Exhaustive exercise lead to glycogen depletion in type IIA and IIX fibers, a reduction in lipid droplets density in both type I-1 and I-2 fibers, and a decrease in the size of lipid droplets exclusively in type I-1 fibers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。