Delineating the extracellular water-accessible surface of the proton-coupled folate transporter

描绘质子偶联叶酸转运体的细胞外水可及表面

阅读:6
作者:Phaneendra Kumar Duddempudi, Raman Goyal, Swapneeta Sanjay Date, Michaela Jansen

Abstract

The proton-coupled folate transporter (PCFT) was recently identified as the major uptake route for dietary folates in humans. The three-dimensional structure of PCFT and its detailed interplay with function remain to be determined. We screened the water-accessible extracellular surface of HsPCFT using the substituted-cysteine accessibility method, to investigate the boundaries between the water-accessible surface and inaccessible buried protein segments. Single-cysteines, engineered individually at 40 positions in a functional cysteine-less HsPCFT background construct, were probed for plasma-membrane expression in Xenopus oocytes with a bilayer-impermeant primary-amine-reactive biotinylating agent (sulfosuccinimidyl 6-(biotinamido) hexanoate), and additionally for water-accessibility of the respective engineered cysteine with the sulfhydryl-selective biotinylating agent 2-((biotinoyl)amino)ethyl methanethiosulfonate. The ratio between Cys-selective over amine-selective labeling was further used to evaluate three-dimensional models of HsPCFT generated by homology / threading modeling. The closest homologues of HsPCFT with a known experimentally-determined three-dimensional structure are all members of one of the largest membrane protein super-families, the major facilitator superfamily (MFS). The low sequence identity--14% or less--between HsPCFT and these templates necessitates experiment-based evaluation and model refinement of homology/threading models. With the present set of single-cysteine accessibilities, the models based on GlpT and PepTSt are most promising for further refinement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。