p62/Sequestosome 1 levels increase and phosphorylation is altered in Cx50D47A lenses, but deletion of p62/sequestosome 1 does not improve transparency

Cx50D47A 晶状体中 p62/Sequestosome 1 水平升高,磷酸化发生改变,但删除 p62/sequestosome 1 不会提高透明度

阅读:7
作者:Oscar Jara, Hubert Mysliwiec, Peter J Minogue, Viviana M Berthoud, Eric C Beyer

Conclusions

Although homozygous Cx50D47A lenses have increased levels of p62, a specific reduction in p62 phosphorylation at T269/S272, and a specific increase in p62 phosphorylation at S349, this protein is not a critical determinant of the severity of the abnormalities of these lenses (reduced growth or differentiation and cataracts). The lens may utilize redundant or compensatory systems (such as changes in levels of ubiquilin 2) to compensate for the lack of p62 in homozygous Cx50D47A lenses.

Methods

Protein levels were determined with immunoblotting. Mouse lenses were examined with dark-field illumination microscopy. Intensities of the opacities and lens equatorial diameters were quantified using ImageJ. Nuclei and nuclear remnants were detected with fluorescence microscopy of lens sections stained with 4',6-diamino-2-phenylindole dihydrochloride (DAPI).

Purpose

p62/Sequestosome 1 (p62) is a stress-induced protein that is involved in several different intracellular pathways, including regulation of aspects of protein degradation. p62 levels are elevated in several types of cataracts. We investigated whether levels of p62 and its phosphorylation were altered in the lenses of Cx50D47A mice, which express a mutant of connexin50 (Cx50) that leads to cataracts and impaired lens differentiation. To evaluate the importance of p62 in the lens defects caused by a connexin50 mutant, we also examined the effect of deleting p62 in homozygous Cx50D47A mice.

Results

Levels of total p62 were increased in the lenses of homozygous Cx50D47A mice compared to those of the wild-type animals. The ratio of p62 phosphorylated at threonine-269/serine-272 (T269/S272) to total p62 was significantly decreased, whereas the ratio of p62 phosphorylated at serine-349 (S349) to total p62 was significantly increased in lenses of homozygous Cx50D47A mice. However, deletion of p62 did not affect the sizes of the lenses or the severity of their cataracts in homozygous Cx50D47A mice. Deletion of p62 did not improve connexin50 or connexin46 levels. Moreover, deletion of p62 did not change the levels of crystallins, histone H3, the mitochondrial import receptor subunit TOM20 homolog, or the abundance of nuclei and nuclear fragments in the lenses of homozygous Cx50D47A mice. Homozygous deletion of p62 led to an 84% increase in the levels of ubiquilin 2, but did not significantly affect the levels of ubiquilin 1 or ubiquilin 4. Conclusions: Although homozygous Cx50D47A lenses have increased levels of p62, a specific reduction in p62 phosphorylation at T269/S272, and a specific increase in p62 phosphorylation at S349, this protein is not a critical determinant of the severity of the abnormalities of these lenses (reduced growth or differentiation and cataracts). The lens may utilize redundant or compensatory systems (such as changes in levels of ubiquilin 2) to compensate for the lack of p62 in homozygous Cx50D47A lenses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。