Molecular glues that inhibit specific Zn2+-dependent DUB activity and inflammation

抑制特定 Zn2+ 依赖性 DUB 活性和炎症的分子胶

阅读:6
作者:Francesca Chandler, Poli Adi Narayana Reddy, Smita Bhutda, Rebecca L Ross, Miriam Walden, Kieran Walker, Stefano Di Donato, Joel A Cassel, Michael A Prakesch, Ahmed Aman, Alessandro Datti, Lisa J Campbell, Martina Foglizzo, Lillie Bell, Daniel N Stein, James R Ault, Rima S Al-Awar, Antonio N Calabre

Abstract

Deubiquitylases (DUBs) play a pivotal role in cell signalling and are often regulated by homo- or hetero-interactions within protein complexes. The BRCC36 isopeptidase complex (BRISC) regulates inflammatory signalling by selectively cleaving K63-linked polyubiquitin chains on Type I interferon receptors (IFNAR1). BRCC36 is a Zn2+-dependent JAMM/MPN DUB, a challenging ubiquitin protease class for the design of selective inhibitors. We identified first-in-class DUB inhibitors that act as BRISC molecular glues (BLUEs). BLUEs inhibit DUB activity by stabilising a BRISC dimer consisting of 16 subunits. The BLUE-stabilised BRISC dimer is an autoinhibited conformation, whereby the active sites and interactions with the recruiting subunit SHMT2 are blocked. This unique mode of action leads to highly selective inhibitors for BRISC over related complexes with the same catalytic subunit, splice variants and other JAMM/MPN DUBs. Structure-guided inhibitor resistant mutants confirm BLUEs on-target activity in cells, and BLUE treatment results in reduced interferon-stimulated gene (ISG) expression in human peripheral blood mononuclear cells from Scleroderma patients, a disease linked with aberrant IFNAR1 activation. BLUEs represent a new class of molecules with potential utility in Type I interferon-mediated diseases and a template for designing selective inhibitors of large protein complexes by promoting protein-protein interactions instead of blocking them.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。