Quizartinib, a selective FLT3 inhibitor, maintains antileukemic activity in preclinical models of RAS-mediated midostaurin-resistant acute myeloid leukemia cells

Quizartinib 是一种选择性 FLT3 抑制剂,在 RAS 介导的米哚妥林耐药急性髓系白血病细胞的临床前模型中保持抗白血病活性

阅读:4
作者:Tomoya Aikawa, Noriko Togashi, Koichi Iwanaga, Hiroyuki Okada, Yumi Nishiya, Shinichi Inoue, Mark J Levis, Takeshi Isoyama

Abstract

FLT3 internal tandem duplication (ITD) mutations are associated with poor prognosis in patients with acute myeloid leukemia (AML). In this preclinical study, we characterized the binding affinity and selectivity of quizartinib, a small-molecule inhibitor of FLT3, and AC886, the active metabolite of quizartinib, compared with those of other FLT3 inhibitors. Selectivity profiling against >400 kinases showed that quizartinib and AC886 were highly selective against FLT3. Quizartinib and AC886 inhibited FLT3 signaling pathways in FLT3-ITD-mutated AML cells, leading to potent growth inhibition with IC50 values of <1 nM. When quizartinib was administered to mice bearing FLT3-ITD mutated tumors, AC886 was rapidly detected and tumor regression was observed at doses of ≥1 mg/kg without severe body weight loss. In addition, quizartinib inhibited the viability of midostaurin-resistant MOLM-14 cells and exerted potent antitumor activity in mouse xenograft models without severe body weight loss, while midostaurin and gilteritinib did not show significant antitumor effects. This is the first detailed characterization of quizartinib and AC886 in comparison with other FLT3 inhibitors under the same experimental conditions. Preclinical antileukemic activity in midostaurin-resistant FLT3-ITD-mutated AML cells suggests the potential value of quizartinib following midostaurin failure in patients with FLT3-ITD mutated AML.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。