Detailed Analysis of Prebiotic Fructo- and Galacto-Oligosaccharides in the Human Small Intestine

人类小肠中益生元果糖和半乳寡糖的详细分析

阅读:9
作者:Mara P H van Trijp, Melany Rios-Morales, Madelon J Logtenberg, Shohreh Keshtkar, Lydia A Afman, Ben Witteman, Barbara Bakker, Dirk-Jan Reijngoud, Henk Schols, Guido J E J Hooiveld

Abstract

Galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS) are food ingredients that improve human health, but their degradation throughout the human small intestine is not well understood. We studied the breakdown kinetics of FOS and GOS in the intestines of seven healthy Dutch adults. Subjects were equipped with a catheter in the distal ileum or proximal colon and consumed 5 g of chicory-derived FOS (degree of polymerization (DP) DP2-10), and 5 g of GOS (DP2-6). Postprandially, intestinal content was frequently collected until 350 min and analyzed for mono-, di-, and oligosaccharides. FOS and GOS had recoveries of 96 ± 25% and 76 ± 28%, respectively. FOS DP ≥ 2 and GOS DP ≥ 3 abundances in the distal small intestine or proximal colon matched the consumed doses, while GOS dimers (DP2) had lower recoveries, namely 22.8 ± 11.1% for β-D-gal-(1↔1)-α-D-glc+β-D-gal-(1↔1)-β-D-glc, 19.3 ± 19.1% for β-D-gal-(1 → 2)-D-glc+β-D-gal-(1 → 3)-D-glc, 43.7 ± 24.6% for β-D-gal-(1 → 6)-D-gal, and 68.0 ± 38.5% for β-D-gal-(1 → 4)-D-gal. Lactose was still present in the distal small intestine of all of the participants. To conclude, FOS DP ≥ 2 and GOS DP ≥ 3 were not degraded in the small intestine of healthy adults, while most prebiotic GOS DP2 was hydrolyzed in a structure-dependent manner. We provide evidence on the resistances of GOS with specific β-linkages in the human intestine, supporting the development of GOS prebiotics that resist small intestine digestion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。