Disruption of Critical Period Plasticity in a Mouse Model of Neurofibromatosis Type 1

型神经纤维瘤病小鼠模型中关键期可塑性的破坏

阅读:7
作者:Mariska van Lier, M Hadi Saiepour, Koen Kole, Juliette E Cheyne, Nawal Zabouri, Thomas Blok, Yi Qin, Emma Ruimschotel, J Alexander Heimel, Christian Lohmann, Christiaan N Levelt

Abstract

Neurofibromatosis type 1 (NF1) is a common monogenic neurodevelopmental disorder associated with physical and cognitive problems. The cognitive issues are thought to arise from increased release of the neurotransmitter GABA. Modulating the signaling pathways causing increased GABA release in a mouse model of NF1 reverts deficits in hippocampal learning. However, clinical trials based on these approaches have so far been unsuccessful. We therefore used a combination of slice electrophysiology, in vivo two-photon calcium imaging, and optical imaging of intrinsic signal in a mouse model of NF1 to investigate whether cortical development is affected in NF1, possibly causing lifelong consequences that cannot be rescued by reducing inhibition later in life. We find that, in NF1 mice of both sexes, inhibition increases strongly during the development of the visual cortex and remains high. While this increase in cortical inhibition does not affect spontaneous cortical activity patterns during early cortical development, the critical period for ocular dominance plasticity is shortened in NF1 mice due to its early closure but unaltered onset. Notably, after environmental enrichment, differences in inhibitory innervation and ocular dominance plasticity between NF1 mice and WT littermates disappear. These results provide the first evidence for critical period dysregulation in NF1 and suggest that treatments aimed at normalizing levels of inhibition will need to start at early stages of development.SIGNIFICANCE STATEMENT Neurofibromatosis type 1 is associated with cognitive problems for which no treatment is currently available. This study shows that, in a mouse model of neurofibromatosis type 1, cortical inhibition is increased during development and critical period regulation is disturbed. Rearing the mice in an environment that stimulates cognitive function overcomes these deficits. These results uncover critical period dysregulation as a novel mechanism in the pathogenesis of neurofibromatosis type 1. This suggests that targeting the affected signaling pathways in neurofibromatosis type 1 for the treatment of cognitive disabilities may have to start at a much younger age than has so far been tested in clinical trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。