Simultaneously monitoring endogenous MAPK members in single living cells by multi-channel fluorescence correlation spectroscopy

多通道荧光相关光谱法同时监测单个活细胞内源性MAPK成员

阅读:4
作者:Liyun Deng, Xiangyi Huang, Chaoqing Dong, Jicun Ren

Abstract

The mitogen-activated protein kinase (MAPK) pathway is a major module for cellular signal transduction. The dysregulation of the MAPK pathway has been involved in the pathogenesis of multiple diseases ranging from cancers to chronic inflammations. So far, we have not fully understood the influences of external factors and signaling networks on the MAPK pathway due to the lack of in situ methods for simultaneous detection of multiple kinases in the pathway in living cells. Herein, we present a new strategy for in situ and simultaneously monitoring MAPK pathway kinases in single living cells combining multi-channel fluorescence correlation spectroscopy (FCS) with affinity fluorescent probes. We chose rapidly growing fibrosarcoma kinase (RAF), mitogen-activated protein kinase (MEK), and extracellular signal-regulated kinase (ERK) as representative members in the MAPK pathway. We designed and synthesized three fluorescent affinity probes and experimental results demonstrated that the three probes specifically targeted endogenous BRAF, MEK1/2, and ERK1/2 in living cells. Based on the multi-channel FCS system, we studied the influences of biological substances, drugs and oxidative stress on the activities of endogenous MAPK kinases and the cross-talk between the MAPK and PI3K-mTOR pathways. We have found that serum, sorafenib, and hydrogen peroxide can regulate multiple MAPK kinases and the effects of external stimuli can transmit to the MAPK pathway; furthermore, we have observed that the MAPK pathway can be activated by modulating the PI3K-mTOR pathway. Our results illustrated the complexity of a cellular signal network and the necessity of in situ and simultaneous determination of biomolecules in living cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。