Glutathione reductase-mediated thiol oxidative stress suppresses metastasis of murine melanoma cells

谷胱甘肽还原酶介导的硫醇氧化应激抑制小鼠黑色素瘤细胞的转移

阅读:15
作者:Xia Li, Junzhou Wu, Xiaoying Zhang, Wei Chen

Abstract

Malignant melanoma is a highly metastatic and life-threatening cancer. Reactive oxygen species (ROS) play important roles in cancer initiation and progression including metastasis. It has been reported that the oxidative stress spontaneously generated in circulating melanoma cells was able to suppress distant metastasis in vivo. However, little is known regarding the effects and mechanism of glutathione reductase (GR) inhibition-induced oxidative stress in regulation of melanoma metastasis. Here, we demonstrate that GR inhibition generates oxidative stress and suppresses lung metastasis and subcutaneous growth of melanoma in vivo. In addition, inhibitory effects by GR activity reduction were observed on cell proliferation, colony formation, cell adhesion, migration and invasion in melanoma cells in vitro. GR inhibition-induced oxidative stress was also found to block epithelial-to-mesenchymal transition (EMT) by decreasing the expression of Vimentin, ERK1/2, transcription factor Snail and increasing the expression of E-cadherin. In addition, actin rearrangement, a key element involved in cell motility, was also affected by GR-mediated oxidative stress possibly through protein S-glutathionylation on actin. In conclusion, this study identifies GR as an effective regulator of oxidative stress that affects the multistep processes of metastasis in melanoma cells, and it becomes a potential target for melanoma therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。