Plasminogen Activation Inhibitor-1 Promotes Resilience to Acute Oxidative Stress in Cerebral Arteries from Females

纤溶酶原激活抑制剂-1 增强雌性脑动脉对急性氧化应激的恢复能力

阅读:8
作者:Safa, Charles E Norton

Abstract

Plasminogen activation inhibitor-1 (PAI-1) plays a central role in thrombus formation leading to stroke; however, the contributions of PAI-1 to cellular damage in response to reactive oxygen species which are elevated during reperfusion are unknown. Given that PAI-1 can limit apoptosis, we hypothesized that PAI increases the resilience of cerebral arteries to H2O2 (200 µM). Cell death, mitochondrial membrane potential, and mitochondrial ROS production were evaluated in pressurized mouse posterior cerebral arteries from males and females. The effects of pharmacological and genetic inhibition of PAI-1 signaling were evaluated with the inhibitor PAI-039 (10 µM) and PAI-1 knockout mice, respectively. During exposure to H2O2, PCAs from male mice lacking PAI-1 had reduced mitochondrial depolarization and smooth muscle cell death, and PAI-039 increased EC death. In contrast, mitochondrial depolarization and cell death were augmented in female PCAs. With no effect of PAI-1 inhibition on resting mitochondrial ROS production, vessels from female PAI-1 knockout mice had increased mitochondrial ROS generation during H2O2 exposure. During acute exposure to oxidative stress, protein ablation of PAI-1 enhances cell death in posterior cerebral arteries from females while limiting cell death in males. These findings provide important considerations for blood flow restoration during stroke treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。