Aggregation-Inhibiting scFv-Based Therapies Protect Mice against AAV1/2-Induced A53T-α-Synuclein Overexpression

基于聚集抑制 scFv 的疗法可保护小鼠免受 AAV1/2 诱导的 A53T-α-突触核蛋白过度表达

阅读:6
作者:Benjamin W Schlichtmann, Bharathi N Palanisamy, Emir Malovic, Susheel K Nethi, Piyush Padhi, Monica Hepker, Joseph Wurtz, Manohar John, Bhupal Ban, Vellareddy Anantharam, Anumantha G Kanthasamy, Balaji Narasimhan, Surya K Mallapragada

Abstract

To date, there is no cure for Parkinson's disease (PD). There is a pressing need for anti-neurodegenerative therapeutics that can slow or halt PD progression by targeting underlying disease mechanisms. Specifically, preventing the build-up of alpha-synuclein (αSyn) and its aggregated and mutated forms is a key therapeutic target. In this study, an adeno-associated viral vector loaded with the A53T gene mutation was used to induce rapid αSyn-associated PD pathogenesis in C57BL/6 mice. We tested the ability of a novel therapeutic, a single chain fragment variable (scFv) antibody with specificity only for pathologic forms of αSyn, to protect against αSyn-induced neurodegeneration, after unilateral viral vector injection in the substantia nigra. Additionally, polyanhydride nanoparticles, which provide sustained release of therapeutics with dose-sparing properties, were used as a delivery platform for the scFv. Through bi-weekly behavioral assessments and across multiple post-mortem immunochemical analyses, we found that the scFv-based therapies allowed the mice to recover motor activity and reduce overall αSyn expression in the substantia nigra. In summary, these novel scFv-based therapies, which are specific exclusively for pathological aggregates of αSyn, show early promise in blocking PD progression in a surrogate mouse PD model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。