Acrylic-based culture plate format perfusion device to establish liver endothelial-epithelial interface

丙烯酸基培养板形式灌注装置建立肝脏内皮-上皮界面

阅读:5
作者:Dennis McDuffie, Charles G Alver, Bhumi Suthar, Madeline Helm, David Oliver, R Alan Burgess, David Barr, Emmanuel Thomas, Ashutosh Agarwal

Abstract

Microphysiological Systems (MPSs) or organs-on-chips, are microfluidic devices used to model human physiology in vitro. Polydimethylsiloxane (PDMS) is the most widely used material for organs-on-chips due to its established fabrication methods and biocompatibility properties. However, non-specific binding of small molecules limits PDMS for drug screening applications. Here, we designed a novel acrylic-based MPS to capture the physiological architecture that is observed universally in tissues across the body: the endothelial-epithelial interface (EEI). To reconstruct the EEI biology, we designed a membrane-based chip that features endothelial cells on the underside of the membrane exposed to mechanical shear from the path of media flow, and epithelial cells on the opposite side of the membrane protected from flow, as they are in vivo. We used a liver model with a hepatic progenitor cell line and human umbilical vein endothelial cells to assess the biological efficacy of the MPS. We computationally modeled the physics that govern the function of perfusion through the MPS. Empirically, efficacy was measured by comparing differentiation of the hepatic progenitor cells between the MPS and 2D culture conditions. We demonstrated that the MPS significantly improved hepatocyte differentiation, increased extracellular protein transport, and raised hepatocyte sensitivity to drug treatment. Our results strongly suggest that physiological perfusion has a profound effect on proper hepatocyte function, and the modular chip design motivates opportunities for future study of multi-organ interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。