Chlorquinaldol Alleviates Lung Fibrosis in Mice by Inhibiting Fibroblast Activation through Targeting Methionine Synthase Reductase

氯喹那多通过靶向蛋氨酸合酶还原酶抑制成纤维细胞活化减轻小鼠肺纤维化

阅读:5
作者:Xiangyu Yang, Geng Lin, Yitong Chen, Xueping Lei, Yitao Ou, Yuyun Yan, Ruiwen Wu, Jie Yang, Yiming Luo, Lixin Zhao, Xiuxiu Zhang, Zhongjin Yang, Aiping Qin, Ping Sun, Xi-Yong Yu, Wenhui Hu

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with limited treatment options. Thus, it is essential to investigate potential druggable targets to improve IPF treatment outcomes. By screening a curated library of 201 small molecules, we have identified chlorquinaldol, a known antimicrobial drug, as a potential antifibrotic agent. Functional analyses have demonstrated that chlorquinaldol effectively inhibits the transition of fibroblasts to myofibroblasts in vitro and mitigates bleomycin-induced pulmonary fibrosis in mice. Using a mass spectrometry-based drug affinity responsive target stability strategy, we revealed that chlorquinaldol inhibited fibroblast activation by directly targeting methionine synthase reductase (MTRR). Decreased MTRR expression was associated with IPF patients, and its reduced expression in vitro promoted extracellular matrix deposition. Mechanistically, chlorquinaldol bound to the valine residue (Val-467) in MTRR, activating the MTRR-mediated methionine cycle. This led to increased production of methionine and s-adenosylmethionine, counteracting the fibrotic effect. In conclusion, our findings suggest that chlorquinaldol may serve as a novel antifibrotic medication, with MTRR-mediated methionine metabolism playing a critical role in IPF development. Therefore, targeting MTRR holds promise as a therapeutic strategy for pulmonary fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。