Development of a network of carcinogenicity adverse outcome pathways and its employment as an evidence framework for safety assessment

致癌性不良后果途径网络的开发及其作为安全评估证据框架的应用

阅读:17
作者:Alex N Cayley, Robert S Foster, Emma Hill, Steven Kane, Grace Kocks, Alun Myden, Daniel Newman, Susanne A Stalford, Jonathan D Vessey, Reza Zarei, Antonio Anax F De Oliveira

Abstract

The traditional paradigm for safety assessment of chemicals for their carcinogenic potential to humans relies heavily on a battery of well-established genotoxicity tests, usually followed up by long-term, high-dose rodent studies. There are a variety of problems with this approach, not least that the rodent may not always be the best model to predict toxicity in humans. Consequently, new approach methodologies (NAMs) are being developed to replace or enhance predictions coming from the existing assays. However, a combination of the data arising from NAMs is likely to be required to improve upon the current paradigm, and consequently a framework is needed to combine evidence in a meaningful way. Adverse outcome pathways (AOPs) represent an ideal construct on which to organize this evidence. In this work, a data structure outlined previously was used to capture AOPs and evidence relating to carcinogenicity. Knowledge held within the predictive system Derek Nexus was extracted, built upon, and arranged into a coherent network containing 37 AOPs. 60 assays and 351 in silico alerts were then associated with KEs in this network, and it was brought to life by associating data and contextualizing evidence and predictions for over 13,400 compounds. Initial investigations into using the network to view knowledge and reason between evidence in different ways were made. Organizing knowledge and evidence in this way provides a flexible framework on which to carry out more consistent and meaningful carcinogenicity safety assessments in many different contexts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。