MEF2C Alleviates Postoperative Cognitive Dysfunction by Repressing Ferroptosis

MEF2C 通过抑制铁死亡缓解术后认知功能障碍

阅读:7
作者:Shanshan Wang, Zankai Wu, Xueshan Bu, Xuan Peng, Qin Zhou, Wenqin Song, Wenwei Gao, Wei Wang, Zhongyuan Xia

Background

Ferroptosis, a form of programmed cell death featured by lipid peroxidation, has been proposed as a potential etiology for postoperative cognitive dysfunction (POCD). Myocyte-specific enhancer factor 2C (MEF2C), a transcription factor expressed in various brain cell types, has been implicated in cognitive disorders. This study sought to ascertain whether MEF2C governs postoperative cognitive capacity by affecting ferroptosis.

Conclusions

Our findings suggest that MEF2C may be a promising therapeutic target for POCD through its negative modulation of ferroptosis.

Methods

Transcriptomic analysis of public data was used to identify MEF2C as a candidate differentially expressed gene in the hippocampus of POCD mice. The POCD mouse model was established via aseptic laparotomy under isoflurane anesthesia after treatment with recombinant adeno-associated virus 9 (AAV9)-mediated overexpression of MEF2C and/or the glutathione peroxidase 4 (GPX4) inhibitor RSL3. Cognitive performance, Nissl staining, and ferroptosis-related parameters were assessed. Dual-luciferase reporter gene assays and chromatin immunoprecipitation assays were implemented to elucidate the mechanism by which MEF2C transcriptionally activates GPX4.

Results

MEF2C mRNA and protein levels decreased in the mouse hippocampus following anesthesia and surgery. MEF2C overexpression ameliorated postoperative memory decline, hindered lipid peroxidation and iron accumulation, and enhanced antioxidant capacity, which were reversed by RSL3. Additionally, MEF2C was found to directly bind to the Gpx4 promoter and activate its transcription. Conclusions: Our findings suggest that MEF2C may be a promising therapeutic target for POCD through its negative modulation of ferroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。