Physiology of Cultured Human Microglia Maintained in a Defined Culture Medium

在特定培养基中培养的人类小胶质细胞的生理学

阅读:5
作者:Manju Tewari, Maheen Khan, Megha Verma, Jeroen Coppens, Joanna M Kemp, Richard Bucholz, Philippe Mercier, Terrance M Egan

Abstract

Microglia are the primary immune cell of the CNS, comprising 5-20% of the ∼60 billion neuroglia in the human brain. In the developing and adult CNS, they preferentially target active neurons to guide synapse maturation and remodeling. At the same time, they are the first line of defense against bacterial, fungal, and viral CNS infections. Although an extensive literature details their roles in rodents, less is known about how they function in humans because of the difficulty in obtaining tissue samples and the understandable inability to extensively study human microglia in situ. In this study, we use recent advances in the study of brain microenvironments to establish cultures of primary human microglia in a serum-free medium. Postsurgical samples of human brain were enzymatically and mechanically dissociated into single cells, and microglia were isolated at high purity by positive selection using CD11b Ab-coated microbeads. The CD11b+ cells were plated on poly-l-lysine-coated surfaces and bathed in serum-free DMEM/F12 supplemented with three essential components (TGF-β, IL-34, and cholesterol). Under these conditions, microglia assumed a ramified morphology, showed limited proliferation, actively surveyed their surroundings, and phagocytosed bacterial microparticles. In the presence of LPS, they assumed a more compact shape and began production of proinflammatory cytokines and reactive oxygen species. LPS on its own triggered release of TNF-α, whereas release of IL-1β required costimulation by ATP. Thus, human microglia maintained in a defined medium replicate many of the characteristics expected of native cells in the brain and provide an accessible preparation for investigations of human microglial physiology, pharmacology, and pathophysiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。