Histochemical Characterization of the Dorsal Raphe-Periaqueductal Grey Dopamine Transporter Neurons Projecting to the Extended Amygdala

投射至扩展杏仁核的背缝-中脑导水管周围灰质多巴胺转运体神经元的组织化学表征

阅读:6
作者:Qin Zhao, Tetsufumi Ito, Chika Soko, Yoshie Hori, Takafumi Furuyama, Hiroyuki Hioki, Kohtarou Konno, Miwako Yamasaki, Masahiko Watanabe, Satoshi Ohtsuka, Munenori Ono, Nobuo Kato, Ryo Yamamoto

Abstract

The dorsal raphe (DR) nucleus contains many tyrosine hydroxylase (TH)-positive neurons which are regarded as dopaminergic (DA) neurons. These DA neurons in the DR and periaqueductal gray (PAG) region (DADR-PAG neurons) are a subgroup of the A10 cluster, which is known to be heterogeneous. This DA population projects to the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST) and has been reported to modulate various affective behaviors. To characterize, the histochemical features of DADR-PAG neurons projecting to the CeA and BNST in mice, the current study combined retrograde labeling with Fluoro-Gold (FG) and histological techniques, focusing on TH, dopamine transporter (DAT), vasoactive intestinal peptide (VIP), and vesicular glutamate transporter 2 (VGlut2). To identify putative DA neurons, DAT-Cre::Ai14 mice were used. It was observed that DATDR-PAG neurons consisted of the following two subpopulations: TH+/VIP- and TH-/VIP+ neurons. The DAT+/TH-/VIP+ subpopulation would be non-DA noncanonical DAT neurons. Anterograde labeling of DATDR-PAG neurons with AAV in DAT-Cre mice revealed that the fibers exclusively innervated the lateral part of the CeA and the oval nucleus of the BNST. Retrograde labeling with FG injections into the CeA or BNST revealed that the two subpopulations similarly innervated these regions. Furthermore, using VGlut2-Cre::Ai14 mice, it was turned out that the TH-/VIP+ subpopulations innervating both CeA and BNST were VGlut2-positive neurons. These two subpopulations of DATDR-PAG neurons, TH+/VIP- and TH-/VIP+, might differentially interfere with the extended amygdala, thereby modulating affective behaviors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。