Therapeutic potential of archaeal unfoldase PANet and the gateless T20S proteasome in P23H rhodopsin retinitis pigmentosa mice

古菌解折叠酶PANet和无门控T20S蛋白酶体在P23H视紫红质视网膜色素变性小鼠中的治疗潜力

阅读:2
作者:Celine Brooks ,Douglas Kolson ,Emily Sechrest ,Janelle Chuah ,Jane Schupp ,Neil Billington ,Wen-Tao Deng ,David Smith ,Maxim Sokolov

Abstract

Neurodegenerative diseases are characterized by the presence of misfolded and aggregated proteins which are thought to contribute to the development of the disease. In one form of inherited blinding disease, retinitis pigmentosa, a P23H mutation in the light-sensing receptor, rhodopsin causes rhodopsin misfolding resulting in complete vision loss. We investigated whether a xenogeneic protein-unfolding ATPase (unfoldase) from thermophilic Archaea, termed PANet, could counteract the proteotoxicity of P23H rhodopsin. We found that PANet increased the number of surviving photoreceptors in P23H rhodopsin mice and recognized rhodopsin as a substate in vitro. This data supports the feasibility and efficacy of using a xenogeneic unfoldase as a therapeutic approach in mouse models of human neurodegenerative diseases. We also showed that an archaeal proteasome, called the T20S can degrade rhodopsin in vitro and demonstrated that it is feasible and safe to express gateless T20S proteasomes in vivo in mouse rod photoreceptors. Expression of archaeal proteasomes may be an effective therapeutic approach to stimulate protein degradation in retinopathies and neurodegenerative diseases with protein-misfolding etiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。