Neuronal Calcium Sensor 1 is up-regulated in response to stress to promote cell survival and motility in cancer cells

神经元钙传感器 1 在压力下上调,从而促进癌细胞的存活和运动

阅读:10
作者:Henrike K Grosshans, Tom T Fischer, Julia A Steinle, Allison L Brill, Barbara E Ehrlich

Abstract

Changes in intracellular calcium (Ca2+ ) signaling can modulate cellular machinery required for cancer progression. Neuronal calcium sensor 1 (NCS1) is a ubiquitously expressed Ca2+ -binding protein that promotes tumor aggressiveness by enhancing cell survival and metastasis. However, the underlying mechanism by which NCS1 contributes to increased tumor aggressiveness has yet to be identified. In this study, we aimed to determine (a) whether NCS1 expression changes in response to external stimuli, (b) the importance of NCS1 for cell survival and migration, and (c) the cellular mechanism(s) through which NSC1 modulates these outcomes. We found that NCS1 abundance increases under conditions of stress, most prominently after stimulation with the pro-inflammatory cytokine tumor necrosis factor α, in a manner dependent on nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). We found that NFκB signaling is activated in human breast cancer tissue, which was accompanied by an increase in NCS1 mRNA expression. Further exploration into the relevance of NCS1 in breast cancer progression showed that knockout of NCS1 (NCS1 KO) caused decreased cell survival and motility, increased baseline intracellular Ca2+ levels, and decreased inositol 1,4,5-trisphosphate-mediated Ca2+ responses. Protein kinase B (Akt) activity was decreased in NCS1 KO cells, which could be rescued by buffering intracellular Ca2+ . Conversely, Akt activity was increased in cells overexpressing NCS1 (NCS1 OE). We therefore conclude that NCS1 acts as cellular stress response protein up-regulated by stress-induced NFκB signaling and that NCS1 influences cell survival and motility through effects on Ca2+ signaling and Akt pathway activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。