Direct loading of CTL epitopes onto MHC class I complexes on dendritic cell surface in vivo

将 CTL 表位直接加载到体内树突状细胞表面的 MHC I 类复合物上

阅读:11
作者:Peng Wang, Shuyun Dong, Peng Zhao, Xiao He, Mingnan Chen

Abstract

Dendritic cell (DC)-based cytotoxic T lymphocyte (CTL) epitope vaccines are effective to induce CTL responses but require complex ex vivo DC preparation and epitope-loading. To take advantage of DC-based epitope vaccines without involving the ex vivo procedures, we aimed to develop carriers to directly load CTL epitopes onto DCs in vivo. Here, we first engineered a carrier consisting of a hydrophilic polypeptide, immune-tolerant elastin-like polypeptide (iTEP) and a substrate peptide of matrix metalloproteinases-9 (sMMP). The iTEP was able to solubilize CTL epitopes. CTL epitopes were connected to the carrier, iTEP-sMMP, through sMMP so that the epitopes can be cleaved from the carrier by MMP-9. iTEP-sMMP was found to release its epitope payloads in the DC culture media, which contained MMP-9 released from DCs. iTEP-sMMP allowed for the direct loading of CTL epitopes onto the surface MHC class I complexes of DCs. Importantly, iTEP-sMMP resulted in greater epitope presentation by DCs both in vitro and in vivo than a control carrier that cannot directly load epitopes. iTEP-sMMP also induced 2-fold stronger immune responses than the control carrier. To further enhance the direct epitope-loading strategy, we furnished iTEP-sMMP with an albumin-binding domain (ABD) and found the new carrier, ABD-iTEP-sMMP, had greater lymph node (LN) accumulation than iTEP-sMMP. ABD-iTEP-sMMP also resulted in greater immune responses than iTEP-sMMP by 1.5-fold. Importantly, ABD-iTEP-sMMP-delivered CTL epitope vaccine induced stronger immune responses than free CTL epitope vaccine. Taken together, these carriers utilized two physiological features of DCs to realize direct epitope-loading in vivo: the accumulation of DCs in LNs and MMP-9 released from DCs. These carriers are a potential substitute for DC-based CTL epitope vaccines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。