Therapeutic Efficacy of Nanocomplex of Poly(Ethylene Glycol) and Catechin for Dry Eye Disease in a Mouse Model

聚乙二醇和儿茶素纳米复合物对小鼠干眼症的治疗效果

阅读:5
作者:Hyesook Lee, Whuisu Shim, Chae Eun Kim, So Yeon Choi, Haeshin Lee, Jaewook Yang

Conclusions

In this study, we found that PEG may increase bioavailability of catechin. Therefore, the PEG/catechin nanocomplex can be used as a new biomedical material to treat dry eye disease through stabilization of the tear film and inhibition of inflammation.

Methods

NOD.B10.H2b mice were exposed to an air draft and injected with scopolamine for 10 days. Ten days later, the mice were treated with normal saline (n = 11), 1% catechin (n = 11), 1% PEG (n = 11), and 1% catechin/PEG nanocomplex solution mixture containing catechin and PEG at weight ratios of 1:1 (CP1, n = 11), 1:5 (CP5, n = 11), and 1:10 (CP10, n = 11). All treatments were administered five times a day for 10 days. We estimated the effect of PEG/catechin nanocomplexes on inflammation, tear production, epithelium stabilization, and goblet cell density.

Purpose

We investigated the possibility of the nanocomplex of poly(ethylene glycol) (PEG) and catechin as a new biomedical material to treat dry eye disease.

Results

Desiccation stress significantly decreased tear production and increased the corneal irregularity score. Furthermore, desiccation stress markedly increased the detached epithelium and decreased the numbers of conjunctival goblet cells. In addition, the expression of proinflammatory-related factors was markedly induced by desiccation stress in the lacrimal glands. However, the PEG/catechin nanocomplex effectively induced an increase in tear production, stabilization of the corneal epithelium, and an increase in conjunctival goblet cells and anti-inflammatory improvements in a PEG dose-dependent manner. Conclusions: In this study, we found that PEG may increase bioavailability of catechin. Therefore, the PEG/catechin nanocomplex can be used as a new biomedical material to treat dry eye disease through stabilization of the tear film and inhibition of inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。