Medioresinol from Eucommiae cortex improves myocardial infarction-induced heart failure through activation of the PI3K/AKT/mTOR pathway: A network analysis and experimental study

杜仲皮中树脂醇通过激活 PI3K/AKT/mTOR 通路改善心肌梗死引起的心力衰竭:网络分析和实验研究

阅读:8
作者:Xueting Qin, Xuan Liu, Can Guo, Li Huang, Qiyao Xu

Conclusion

This study confirms the role of the PI3K/AKT/mTOR pathway in the cardiovascular protective effects of Eucommiae cortex and provides evidence at the cellular level. Medioresinol demonstrated potential therapeutic effects on myocardial infarction induced heart failure by reducing oxidative stress and inflammatory responses. These findings offer a theoretical basis for the application of Eucommiae cortex in the treatment of heart failure and support the development of new therapeutic drugs for cardiovascular diseases. Future research should further validate these effects in animal models and explore the overall efficacy of Eucommiae cortex.

Methods

Potential active components of Eucommiae cortex were screened using specific data. The targets of these components were predicted using Swiss Institute of Bioinformatics database and TargetNet, and key targets were identified by intersecting with the disease targets of myocardial infarction and heart failure. Protein-Protein Interaction analysis was performed on the key targets to screen for core targets. Genomics Institute of the Novartis Research Foundation and Human Protein Atlas were used to identify myocardial highly expressed targets. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Molecular docking was performed for the final components and target proteins. In vitro experiments were carried out using H9c2 cells subjected to oxygen and glucose deprivation conditions to validate the effects of the screened potential active components.

Objective

This study aims to systematically analyze the potential active components of Eucommiae cortex in the treatment of post- myocardial infarction heart failure through network analysis and molecular docking

Results

Network analysis revealed that Eucommiae cortex might exert its effects through the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), hypoxia-inducible factor 1, and Janus kinase/signal transducer and activator of transcription pathways, which are crucial for myocardial contraction, vascular tone regulation, inflammatory response, and oxidative stress. Molecular docking indicated stable binding of the selected compounds to PI3K, AKT, and mTOR. Medioresinol was selected for further study and shown to significantly improve oxidative stress and inflammatory response in myocardial ischemia-hypoxia model cells by activating the PI3K/AKT/mTOR pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。