Incorporation of chitosan microspheres into collagen-chitosan scaffolds for the controlled release of nerve growth factor

将壳聚糖微球掺入胶原-壳聚糖支架中以控制神经生长因子的释放

阅读:3
作者:Wen Zeng, Mengyao Rong, Xueyu Hu, Wei Xiao, Fengyu Qi, Jinghui Huang, Zhuojing Luo

Background

Artifical nerve scaffold can be used as a promising alternative to autologous nerve grafts to enhance the repair of peripheral nerve defects. However, current nerve scaffolds lack efficient microstructure and neurotrophic support.

Conclusion

Our findings suggest that incorporation of NGF-CMSs into the CCH may be a promising tool in the repair of peripheral nerve defects.

Methods

Microsphere-Scaffold composite was developed by incorporating chitosan microspheres loaded with nerve growth factor (NGF-CMSs) into collagen-chitosan scaffolds (CCH) with longitudinally oriented microchannels (NGF-CMSs/CCH). The morphological characterizations, in vitro release kinetics study, neurite outgrowth assay, and bioactivity assay were evaluated. After that, a 15-mm-long sciatic nerve gap in rats was bridged by the NGF-CMSs/CCH, CCH physically absorbed NGF (NGF/CCH), CCH or nerve autograft. 16 weeks after implantation, electrophysiology, fluoro-gold retrograde tracing, and nerve morphometry were performed.

Results

The NGF-CMSs were evenly distributed throughout the longitudinally oriented microchannels of the scaffold. The NGF-CMSs/CCH was capable of sustained release of bioactive NGF within 28 days as compared with others in vitro. In vivo animal study demonstrated that the outcomes of NGF-CMSs/CCH were better than those of NGF/CCH or CCH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。