Microenvironment-responsive, multimodulated herbal polysaccharide hydrogel for diabetic foot ulcer healing

微环境响应型多调节草本多糖水凝胶用于糖尿病足部溃疡愈合

阅读:9
作者:Xingcan Chen, Zhengbo Hu, Kai Zhao, Xin Rao, Chenjun Shen, Yuchi Chen, Xiaoqing Ye, Chengnan Fang, Fangmei Zhou, Zhishan Ding, Bingqi Zhu

Abstract

Diabetic ulcers (DUs) usually suffer from severe infections, persistent inflammation, and excessive oxidative stress during the healing process, which led to the microenvironmental alternation and severely impede DU healing, resulting in a delayed wound healing. Therefore, it is particularly important to develop a medical dressing that can address these problems simultaneously. To this end, self-healing composite hydrogels were prepared in this study utilizing Bletilla striata polysaccharide (BSP) and Berberine (BER) with borax via borate ester bond. The chemical and mechanical properties of the BSP/BER hydrogels were characterized, and their wound healing performance was investigated in vivo and in vitro. The results showed that the BSP/BER hydrogel significantly accelerated wound healing in DU mice with the healing rate of 94.90 ± 1.81% on the 14th day by using BSP/BER5, and this outstanding performance was achieved by the multi-targeted biological functions of antibacterial, anti-inflammatory and antioxidant, which provided favorable microenvironment for orderly recovery of the wound. Aside from exhibiting the antibacterial rate of over 90% against both Escherichia coli and Staphylococcus aureus, the BSP/BER5 hydrogel could significantly reduce NO levels 4.544 ± 0.32 µmol/L to exert its anti-inflammatory effects. Additionally, it demonstrated a hemolysis rate and promotes cell migration capabilities at (34.92 ± 1.66%). With the above features, the developed BSP/BER hydrogel in this study could be the potential dressing for clinical treatment of DU wound.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。