Tetracyclines cause cell stress-dependent ATF4 activation and mTOR inhibition

四环素引起细胞应激依赖性 ATF4 激活和 mTOR 抑制

阅读:5
作者:Ansgar Brüning, German J Brem, Marianne Vogel, Ioannis Mylonas

Abstract

Tetracyclines have long been used as valuable broad-spectrum antibiotics. The high antibacterial activity of tetracyclines, combined with their good tolerability, has led to their widespread use in treating various infectious diseases. However, similar to other antibiotics, tetracyclines are also known for their adverse effects on different human tissues, including hepatic steatosis. We observed that tetracyclines, including doxycycline and minocycline, caused enhanced expression of the liver chalone inhibin βE in HepG2 cells, mediated by the cell stress-regulated transcription factor ATF4. ATF4 and its target genes ATF3, CHOP, and inhibin βE are involved in cell cycle control, cell survival, cell metabolism, and modulation of cytokine expression. Furthermore, we observed that long term tetracycline incubation also caused inhibition of the mTOR complex, a central regulator of cell metabolism, further contributing to the observed cell-cycle arrest and autophagy in doxycycline- and minocycline-treated cell lines. ATF4 activation and mTOR inhibition link two crucial regulators of the cellular stress response and cell metabolism to the effects of tetracyclines on eukaryotic cell metabolism, and may help to understand the antibiotic-independent influence of these drugs on human tissues. Since the observed effects of tetracyclines on human cells were also found to be dependent on the magnesium ion concentrations supplied, the data further indicate the importance of magnesium supplementation to reduce or prevent side effects of long term treatment with tetracyclines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。