von Hippel-Lindau-targeting microRNA-143-3p attenuates mitochondrial abnormality via AMPK/PGC-1α axis in Parkinson's disease

von Hippel-Lindau 靶向 microRNA-143-3p 通过 AMPK/PGC-1α 轴减轻帕金森病中的线粒体异常

阅读:5
作者:Yucui Liang, Mengyu Gu, Xiao Liang, Yueqian Zhou, Qianhua Yang, Zhiwen Wang, Wenbing Yao, Xiangdong Gao, Song Chen

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by selective loss of dopaminergic neurons. We previously found that inhibition of von Hippel-Lindau (VHL) can alleviate dopaminergic neuron degeneration in PD models via regulation of mitochondrial homeostasis, however, the disease-related alterations of VHL and the regulatory mechanisms of VHL level in PD need to be further investigated. In this study, we found that the levels of VHL were markedly increased in multiple cell models of PD and identified microRNA-143-3p (miR-143-3p) as a promising candidate for regulating VHL expression involved in PD. miR-143-3p directly bound to the 3'untranslated region of human VHL mRNA and inhibited its translation, and exerted neuroprotective effects by improving cell viability, apoptosis and tyrosine hydroxylase abnormality. Furthermore, we demonstrated that miR-143-3p exerted neuroprotection by attenuating mitochondrial abnormality via AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) axis, and AMPK inhibitor abolished the beneficial effects of miR-143-3p on the cell model of PD. Therefore, we identify the dysregulated VHL and miR-143-3p in PD, and propose the therapeutic potential of miR-143-3p to alleviate PD by improving mitochondrial homeostasis via AMPK/PGC-1α axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。