Overexpression of USP35 enhances the protective effect of hUC-MSCs and their extracellular vesicles in oxygen-glucose deprivation/reperfusion-induced SH-SY5Y cells via stabilizing FUNDC1

USP35 的过度表达通过稳定 FUNDC1 增强 hUC-MSC 及其细胞外囊泡在氧-糖剥夺/再灌注诱导的 SH-SY5Y 细胞中的保护作用

阅读:6
作者:Shuo Wang, Xigong Li, Tianjiao Wang, Zeyu Sun, Erwei Feng, Yongming Jin

Abstract

Ischemia-reperfusion (IR) injury is associated with neurological disorders such as stroke. The therapeutic potential of human umbilical cord mesenchymal stem cells (hUC-MSCs) and their secreted extracellular vesicles (EVs) in alleviating IR injury across various cell types including neuronal cells has been documented. However, the underlying mechanisms through which hUC-MSCs and hUC-MSC-EVs protect neuronal cells from IR-triggered damage are not well understood. In this study, we co-cultured SH-SY5Y neuroblastoma cells with hUC-MSCs or hUC-MSC-EVs and subjected them to oxygen-glucose deprivation/reperfusion (OGD/R) treatment. Our findings indicate that both hUC-MSCs and hUC-MSC-EVs significantly improved viability, reduced apoptosis, promoted autophagy of OGD/R-induced SH-SY5Y cells, and decreased mitochondrial reactive oxygen species levels within them. Furthermore, the neuroprotective effect of hUC-MSCs and hUC-MSC-EVs in OGD/R-induced SH-SY5Y cells was enhanced by overexpressing USP35, a deubiquitinase. Mechanistically, USP35 interacted with and stabilized FUNDC1, a positive regulator of mitochondrial metabolism. Knockdown of FUNDC1 in USP35-overexpressing hUC-MSCs and their secreted EVs eliminated the augmented neuroprotective function induced by excess USP35. In conclusion, these findings underscore the crucial role of USP35 in enhancing the neuroprotective function of hUC-MSCs and their secreted EVs, achieved through the stabilization of FUNDC1 in OGD/R-induced SH-SY5Y cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。