Linker Histone H1.2 cooperates with Cul4A and PAF1 to drive H4K31 ubiquitylation-mediated transactivation

连接组蛋白 H1.2 与 Cul4A 和 PAF1 协同作用,驱动 H4K31 泛素化介导的转录激活

阅读:9
作者:Kyunghwan Kim, Bomi Lee, Jaehoon Kim, Jongkyu Choi, Jin-Man Kim, Yue Xiong, Robert G Roeder, Woojin An

Abstract

Increasing evidence suggests that linker histone H1 can influence distinct cellular processes by acting as a gene-specific regulator. However, the mechanistic basis underlying such H1 specificity and whether H1 acts in concert with other chromatin-altering activities remain unclear. Here, we show that one of the H1 subtypes, H1.2, stably interacts with Cul4A E3 ubiquitin ligase and PAF1 elongation complexes and that such interaction potentiates target gene transcription via induction of H4K31 ubiquitylation, H3K4me3, and H3K79me2. H1.2, Cul4A, and PAF1 are functionally cooperative because their individual knockdown results in the loss of the corresponding histone marks and the deficiency of target gene transcription. H1.2 interacts with the serine 2-phosphorylated form of RNAPII, and we argue that it recruits the Cul4A and PAF1 complexes to target genes by bridging the interaction between the Cul4A and PAF1 complexes. These data define an expanded role for H1 in regulating gene transcription and illustrate its dependence on the elongation competence of RNAPII.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。