Temperature-Responsive Magnetic Nanoparticles for Enabling Affinity Separation of Extracellular Vesicles

温度响应磁性纳米粒子用于实现细胞外囊泡的亲和分离

阅读:5
作者:Ramon Jauregui, Selvi Srinivasan, Lucia N Vojtech, Hilary S Gammill, Daniel T Chiu, Florian Hladik, Patrick S Stayton, James J Lai

Abstract

Small magnetic nanoparticles that have surfaces decorated with stimuli-responsive polymers can be reversibly aggregated via a stimulus, such as temperature, to enable efficient and rapid biomarker separation. To fully realize the potential of these particles, the synthesis needs to be highly reproducible and scalable to large quantity. We have developed a new synthesis for temperature-responsive magnetic nanoparticles via an in situ co-precipitation process of Fe2+/Fe3+ salts at room temperature with poly(acrylic acid)- block-poly( N-isopropylacrylamide) diblock co-polymer template, synthesized via the reversible addition-fragmentation chain-transfer polymerization method. These particles were 56% polymer by weight with a 6.5:1 Fe/COOH ratio and demonstrated remarkable stability over a 2 month period. The hydrodynamic diameter remained constant at ∼28 nm with a consistent transition temperature of 34 °C, and the magnetic particle separation efficiency at 40 °C was ≥95% over the 2 month span. These properties were maintained for all large-scale synthesis batches. To demonstrate the practical utility of the stimuli-responsive magnetic nanoparticles, the particles were incorporated into a temperature-responsive binary reagent system and efficiently separated a model protein biomarker (mouse IgG) as well as purified extracellular vesicles derived from a human biofluid, seminal plasma. The ease of using these particles will prove beneficial for various biomedical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。