Heparan Sulfate Sulfation by Hs2st Restricts Astroglial Precursor Somal Translocation in Developing Mouse Forebrain by a Non-Cell-Autonomous Mechanism

Hs2st 的硫酸肝素硫酸化通过非细胞自主机制限制了小鼠前脑发育过程中星形胶质细胞前体体细胞易位

阅读:4
作者:James M Clegg, Hannah M Parkin, John O Mason, Thomas Pratt

Abstract

Heparan sulfate (HS) is a cell surface and extracellular matrix carbohydrate extensively modified by differential sulfation. HS interacts physically with canonical fibroblast growth factor (FGF) proteins that signal through the extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK) pathway. At the embryonic mouse telencephalic midline, FGF/ERK signaling drives astroglial precursor somal translocation from the ventricular zone of the corticoseptal boundary (CSB) to the induseum griseum (IG), producing a focus of Slit2-expressing astroglial guidepost cells essential for interhemispheric corpus callosum (CC) axon navigation. Here, we investigated the cell and molecular function of a specific form of HS sulfation, 2-O HS sulfation catalyzed by the enzyme Hs2st, in midline astroglial development and in regulating FGF protein levels and interaction with HS. Hs2st-/- embryos of either sex exhibit a grossly enlarged IG due to precocious astroglial translocation and conditional Hs2st mutagenesis and ex vivo culture experiments show that Hs2st is not required cell autonomously by CC axons or by the IG astroglial cell lineage, but rather acts non-cell autonomously to suppress the transmission of translocation signals to astroglial precursors. Rescue of the Hs2st-/- astroglial translocation phenotype by pharmacologically inhibiting FGF signaling shows that the normal role of Hs2st is to suppress FGF-mediated astroglial translocation. We demonstrate a selective action of Hs2st on FGF protein by showing that Hs2st (but not Hs6st1) normally suppresses the levels of Fgf17 protein in the CSB region in vivo and use a biochemical assay to show that Hs2st (but not Hs6st1) facilitates a physical interaction between the Fgf17 protein and HS.SIGNIFICANCE STATEMENT We report a novel non-cell-autonomous mechanism regulating cell signaling in developing brain. Using the developing mouse telencephalic midline as an exemplar, we show that the specific sulfation modification of the cell surface and extracellular carbohydrate heparan sulfate (HS) performed by Hs2st suppresses the supply of translocation signals to astroglial precursors by a non-cell-autonomous mechanism. We further show that Hs2st modification selectively facilitates a physical interaction between Fgf17 and HS and suppresses Fgf17 protein levels in vivo, strongly suggesting that Hs2st acts selectively on Fgf17 signaling. HS interacts with many signaling proteins potentially encoding numerous selective interactions important in development and disease, so this class of mechanism may apply more broadly to other biological systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。