Integrin Alpha 9 Blockade Suppresses Lymphatic Valve Formation and Promotes Transplant Survival

整合素 Alpha 9 阻断剂可抑制淋巴瓣膜形成并促进移植存活

阅读:7
作者:Gyeong Jin Kang, Tan Truong, Eric Huang, Valerie Su, Shaokui Ge, Lu Chen

Conclusions

Lymphatic valvulogenesis is critically involved in transplant rejection. Itga-9 targeting may offer a new and effective strategy to interfere with the immune responses and promote graft survival.

Methods

Orthotopic corneal transplantation was performed between fully mismatched C57BL/6 (donor) and BALB/c (recipient) mice. The recipients were randomized to receive subconjunctival injections of either Itga-9 blocking antibody or isotype control twice a week for 8 weeks. Corneal grafts were assessed in vivo by ophthalmic slit-lamp biomicroscopy and analyzed using Kaplan-Meier survival curves. Additionally, whole-mount full-thickness corneas were evaluated ex vivo by immunofluorescent microscopy on both lymphatic vessels and valves.

Purpose

The lymphatic pathway mediates transplant rejection. We recently reported that lymphatic vessels develop luminal valves in the cornea during lymphangiogenesis, and these valves express integrin alpha 9 (Itga-9) and play a critical role in directing lymph flow. In this study, we used an allogeneic corneal transplantation model to investigate whether Itga-9 blockade could suppress valvulogenesis after transplantation, and how this effect would influence the outcomes of the transplants.

Results

Anti-Itga-9 treatment suppressed lymphatic valvulogenesis after transplantation. Our treatment did not affect lymphatic vessel formation or their nasal polarized distribution in the cornea. More importantly, Itga-9 blockade led to a significant promotion of graft survival. Conclusions: Lymphatic valvulogenesis is critically involved in transplant rejection. Itga-9 targeting may offer a new and effective strategy to interfere with the immune responses and promote graft survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。