RHO binding to FAM65A regulates Golgi reorientation during cell migration

RHO 与 FAM65A 结合调节细胞迁移过程中高尔基体的重新定位

阅读:7
作者:Faraz K Mardakheh, Annette Self, Christopher J Marshall

Abstract

Directional cell migration involves reorientation of the secretory machinery. However, the molecular mechanisms that control this reorientation are not well characterised. Here, we identify a new Rho effector protein, named FAM65A, which binds to active RHOA, RHOB and RHOC. FAM65A links RHO proteins to Golgi-localising cerebral cavernous malformation-3 protein (CCM3; also known as PDCD10) and its interacting proteins mammalian STE20-like protein kinases 3 and 4 (MST3 and MST4; also known as STK24 and STK26, respectively). Binding of active RHO proteins to FAM65A does not affect the kinase activity of MSTs but results in their relocation from the Golgi in a CCM3-dependent manner. This relocation is crucial for reorientation of the Golgi towards the leading edge and subsequent directional cell migration. Our results reveal a previously unidentified pathway downstream of RHO that regulates the polarity of migrating cells through Golgi reorientation in a FAM65A-, CCM3- and MST3- and MST4-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。