Long-Term Potentiation at the Mossy Fiber-Granule Cell Relay Invokes Postsynaptic Second-Messenger Regulation of Kv4 Channels

苔藓纤维颗粒细胞接力的长期增强作用引发 Kv4 通道的突触后第二信使调节

阅读:5
作者:Arsalan P Rizwan, Xiaoqin Zhan, Gerald W Zamponi, Ray W Turner

Abstract

Mossy fiber afferents to cerebellar granule cells form the primary synaptic relay into cerebellum, providing an ideal site to process signal inputs differentially. Mossy fiber input is known to exhibit a long-term potentiation (LTP) of synaptic efficacy through a combination of presynaptic and postsynaptic mechanisms. However, the specific postsynaptic mechanisms contributing to LTP of mossy fiber input is unknown. The current study tested the hypothesis that LTP induces a change in intrinsic membrane excitability of rat cerebellar granule cells through modification of Kv4 A-type potassium channels. We found that theta-burst stimulation of mossy fiber input in lobule 9 granule cells lowered the current threshold to spike and increases the gain of spike firing by 2- to 3-fold. The change in postsynaptic excitability was traced to hyperpolarizing shifts in both the half-inactivation and half-activation potentials of Kv4 that occurred upon coactivating NMDAR and group I metabotropic glutamatergic receptors. The effects of theta-burst stimulation on Kv4 channel control of the gain of spike firing depended on a signaling cascade leading to extracellular signal-related kinase activation. Under physiological conditions, LTP of synaptically evoked spike output was expressed preferentially for short bursts characteristic of sensory input, helping to shape signal processing at the mossy fiber-granule cell relay. Significance statement: Cerebellar granule cells receive mossy fiber inputs that convey information on different sensory modalities and feedback from descending cortical projections. Recent work suggests that signal processing across multiple cerebellar lobules is controlled differentially by postsynaptic ionic mechanisms at the level of granule cells. We found that long-term potentiation (LTP) of mossy fiber input invoked a large increase in granule cell excitability by modifying the biophysical properties of Kv4 channels through a specific signaling cascade. LTP of granule cell output became evident in response to bursts of mossy fiber input, revealing that Kv4 control of intrinsic excitability is modified to respond most effectively to patterns of afferent input that are characteristic of physiological sensory patterns.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。