The LTB4-BLT1 axis regulates the polarized trafficking of chemoattractant GPCRs during neutrophil chemotaxis

LTB4-BLT1 轴在中性粒细胞趋化过程中调节趋化因子 GPCR 的极化运输

阅读:7
作者:Bhagawat C Subramanian, Konstadinos Moissoglu, Carole A Parent

Abstract

Neutrophils sense and respond to diverse chemotactic cues through G-protein-coupled receptors (GPCRs). However, the precise trafficking dynamics of chemoattractant GPCRs during neutrophil activation and chemotaxis remain unclear. Here, by using small-molecule inhibitors and CRISPR-based knockouts, we establish that two primary chemoattractant GPCRs - formyl peptide receptor 1 (FPR1) and complement component 5a (C5a) receptor 1 (C5aR1) - internalize in a CDC42-actin-dependent manner. Through live-cell imaging, we demonstrate that, upon stimulation, FPR1 rapidly clusters and re-distributes along the plasma membrane to the trailing edge, where it internalizes and is directionally trafficked towards the front of migrating primary human neutrophils. In contrast to FPR1 and C5aR1, the leukotriene B4 (LTB4) receptor (BLT1, also known as LTB4R), which relays LTB4 signals in response to primary chemoattractants during neutrophil chemotaxis, fails to internalize upon physiological stimulation with LTB4, N-formyl-Met-Leu-Phe (fMLF) or C5a. Importantly, we report that blocking the LTB4-BLT1 axis or downstream myosin activation enhances the internalization of FPR1 and C5aR1, thus reducing downstream signaling and impairing chemotaxis to primary chemoattractants. The polarized trafficking of chemoattractant GPCRs and its regulation by the BLT1-mediated myosin activation therefore drives persistent chemotactic signaling in neutrophils.This article has an associated First Person interview with the first author of the paper.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。