Oxygen-glucose-deprived rat primary neural cells exhibit DJ-1 translocation into healthy mitochondria: a potent stroke therapeutic target

缺氧缺糖的大鼠原代神经细胞表现出 DJ-1 易位到健康线粒体:一种有效的中风治疗靶点

阅读:4
作者:Yuji Kaneko, Naoki Tajiri, Hideki Shojo, Cesar V Borlongan

Aims

DJ-1 is a key redox-reactive neuroprotective protein implicated in regulation of oxidative stress after stroke. However, the molecular mechanism, especially the role of mitochondrial function, by which DJ-1 protects neural cells in stroke remains to be elucidated. The aim of this study was to reveal whether DJ-1 translocates into the mitochondria in exerting neuroprotection against oxidative stress. In particular, we examined DJ-1 secretion from primary rat neural cells (PRNCs) exposed to experimental stroke.

Conclusions

Altogether, these results revealed that DJ-1 participates in the acute endogenous neuroprotection after stroke via the mitochondrial pathway. That DJ-1 was detected immediately after stroke and efficiently translocated into the mitochondria offer a new venue for developing neuroprotective and/or neurorestorative strategies against ischemic stroke.

Methods

Primary rat neural cells were exposed to the oxygen-glucose deprivation (OGD), an established in vitro stroke model, and DJ-1 translocation was measured by immunocytochemistry, and its secretion detected by ELISA.

Results

Under OGD, DJ-1 translocated into the healthy mitochondria, and significant levels of DJ-1 protein were detected. Treatment with anti-DJ-1 antibody reduced cell viability and mitochondrial activity, and increased glutathione level. Interestingly, OGD reversed the ratio of astrocyte/neuron cells (6/4 to 4/6). Conclusions: Altogether, these results revealed that DJ-1 participates in the acute endogenous neuroprotection after stroke via the mitochondrial pathway. That DJ-1 was detected immediately after stroke and efficiently translocated into the mitochondria offer a new venue for developing neuroprotective and/or neurorestorative strategies against ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。