Generation of Cortical, Dopaminergic, Motor, and Sensory Neurons from Human Pluripotent Stem Cells

从人类多能干细胞生成皮质、多巴胺、运动和感觉神经元

阅读:8
作者:Shermaine Huiping Tay, Winanto, Zi Jian Khong, Yong Hui Koh, Shi Yan Ng

Abstract

The use of patient-derived induced pluripotent stem cells (iPSCs) and their neural derivatives is becoming increasingly important in the study of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Lewy body dementia, amyotrophic lateral sclerosis, peripheral neuropathy, and so on. Increasingly, iPSC-derived neurons also reveal key pathways and signaling defects in psychiatric disorders such as autism spectrum disorders, schizophrenia, and bipolar disorder. With recent advances in CRISPR/Cas9-mediated genome editing technology, patient-derived iPSCs with disease-causing mutations can be corrected into "isogenic control lines," and these can be differentiated into neural derivatives with identical genetic background. This provides an opportunity for in vitro disease modeling to unravel disease mechanisms and a platform to facilitate drug discovery. In this chapter, we provide details of the differentiation protocols to reliably derive four currently relevant neuronal subtypes, i.e., cortical neurons, midbrain dopaminergic neurons, spinal motor neurons, and sensory neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。