Reducing Astrocyte Calcium Signaling In Vivo Alters Striatal Microcircuits and Causes Repetitive Behavior

降低体内星形胶质细胞钙信号会改变纹状体微电路并导致重复行为

阅读:5
作者:Xinzhu Yu, Anna M W Taylor, Jun Nagai, Peyman Golshani, Christopher J Evans, Giovanni Coppola, Baljit S Khakh

Abstract

Astrocytes tile the central nervous system, but their functions in neural microcircuits in vivo and their roles in mammalian behavior remain incompletely defined. We used two-photon laser scanning microscopy, electrophysiology, MINIscopes, RNA-seq, and a genetic approach to explore the effects of reduced striatal astrocyte Ca2+ signaling in vivo. In wild-type mice, reducing striatal astrocyte Ca2+-dependent signaling increased repetitive self-grooming behaviors by altering medium spiny neuron (MSN) activity. The mechanism involved astrocyte-mediated neuromodulation facilitated by ambient GABA and was corrected by blocking astrocyte GABA transporter 3 (GAT-3). Furthermore, in a mouse model of Huntington's disease, dysregulation of GABA and astrocyte Ca2+ signaling accompanied excessive self-grooming, which was relieved by blocking GAT-3. Assessments with RNA-seq revealed astrocyte genes and pathways regulated by Ca2+ signaling in a cell-autonomous and non-cell-autonomous manner, including Rab11a, a regulator of GAT-3 functional expression. Thus, striatal astrocytes contribute to neuromodulation controlling mouse obsessive-compulsive-like behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。