MicroRNA-183 exerts a protective role in lupus nephritis through blunting the activation of TGF-β/Smad/TLR3 pathway via reducing Tgfbr1

MicroRNA-183 通过降低 Tgfbr1 抑制 TGF-β/Smad/TLR3 通路的激活,在狼疮性肾炎中发挥保护作用

阅读:6
作者:Huimeng Qi, Qin Cao, Qiang Liu

Conclusion

miR-183 inhibited the expression of Tgfbr1 by direct targeting to disrupt the TGF-β/Smad/TLR3 pathway, thus repressing renal fibrosis and the secretion of inflammatory factors in LN.

Methods

The expression of miR-183 was first detected in MRL/lpr mice at weeks 8 and 12, followed by the assessment the effects of miR-183 on renal fibrosis and inflammatory response after overexpression or silencing of miR-183 in mice with LN. We further overexpressed or knocked-down miR-183 in human renal glomerular endothelial cells (HRGECs), and detected the expression patterns of inflammatory factors and Vimentin and α-SMA in the cells. Differentially expressed genes in HRGECs overexpressing miR-183 by microarrays were intersected with targeting mRNAs of miR-183 predicted by bioinformatics websites. The effects of transforming growth factor beta receptor 1 (Tgfbr1) and TGF-β/Smad/TLR3 pathway on renal damage in mice were verified by rescue experiments.

Purpose

The role of microRNA (miR)-183 has been elucidated in systemic lupus erythematosus, while whether it is also engaged in the lupus nephritis (LN) development remains opaque. The intention of this study is to examine the relevance of miR-183 downregulation in the pathogenesis of LN.

Results

miR-183 expression was notably lower in MRL/lpr mice, and increased miR-183 expression inhibited renal fibrosis and inflammatory response in mice with LN. Moreover, miR-183 inhibitor in HRGECs remarkably promoted the expression of Vimentin and α-SMA and the secretion of inflammatory factors. miR-183 protected the mouse kidney from pathological damages by targeting and inhibiting Tgfbr1 expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。