Multi-parameter tunable synthetic matrix for engineering lymphatic vessels

用于工程淋巴管的多参数可调合成基质

阅读:6
作者:Laura Alderfer, Sanjoy Saha, Fei Fan, Junmin Wu, Laurie E Littlepage, Donny Hanjaya-Putra

Abstract

Controlling the formation of new lymphatic vessels has been postulated as an innovative therapeutic strategy for various disease phenotypes, including neurodegenerative diseases, metabolic syndrome, cardiovascular disease, and lymphedema. Yet, compared to the blood vascular system, little is known about the molecular regulation that controls lymphatic tube formation in a synthetic matrix. In this study, we utilize hyaluronic acid (HA)-hydrogels to design a novel platform for decoupled investigation into how mechanical and biochemical cues regulate lymphatic vessel formation in a synthetic matrix. Using HA and controlling the degree of modification provides a method to preserve and modulate key lymphatic markers Prox1, LYVE-1, and Pdpn. The chemistry of the system allows for spatial and temporal patterning of specific peptides and substrate stiffnesses, and an MMP-sensitive crosslinker allowed cells to degrade and remodel their matrix. Through systematic optimization of multiple parameters, we have designed a system that allows human lymphatic endothelial cells (LECs) to self-assemble into vessels in vitro within 3 days. These engineered vessels can be cultured for up to 3 weeks and can be used for high-throughput mechanistic studies, or can be implanted into immunodeficient mice where they have demonstrated the ability to integrate and mature. Collectively, these studies report a novel, fully-defined 3D synthetic matrix system capable of generating lymphatic vessels in vitro that provide promise as an in vitro screening platform and as a therapeutic vessel transplant, which to our knowledge, is the first ever 3D lymphatic tissue engineering approach to not require the use of support cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。