Diabetes Mellitus Inhibits Hair Follicle Regeneration by Inducing Macrophage Reprogramming-Mediated Pyroptosis

糖尿病通过诱导巨噬细胞重编程介导的细胞焦亡来抑制毛囊再生

阅读:7
作者:Minghui Wang #, Zhiwei Lai #, Hua Zhang #, Weiqi Yang, Fengping Zheng, Dehua He, Xiaofang Liu, Rong Zhong, Mulan Qahar, Guang Yang

Background

Diabetes mellitus (DM) is known to inhibit skin self-renewal and hair follicle stem cell (HFSC) activation, which may be key in the formation of chronic diabetic wounds. This study aimed to investigate the reasons behind the suppression of HFSC activation in DM mice.

Conclusion

T1DM inhibits HFSC activation via macrophage reprogramming-mediated caspase-dependent pyroptosis, and there is a significant regional characterization of cell death. Moreover, T1DM-induced programmed cell death in the skin may be more closely related to immune homeostasis imbalance than to hyperglycemia itself. These findings shed light on the pathogenesis of diabetic ulcers and provide a theoretical basis for the use of hair follicle grafts in wound repair.

Methods

Type 1 DM (T1DM) was induced in 6-week-old mice via streptozotocin, and hair follicle growth was subsequently monitored. RNA sequencing, bioinformatics analyses, qRT‒PCR, immunostaining, and cellular experiments were carried out to investigate the underlying mechanisms involved.

Results

T1DM inhibited HFSC activation, which correlated with an increase in caspase-dependent programmed cell death. Additionally, T1DM triggered apoptosis and pyroptosis, predominantly in HFSCs and epidermal regions, with pyroptosis being more pronounced in the inner root sheath of hair follicles. Notably, significant cutaneous immune imbalances were observed, particularly in macrophages. Cellular experiments demonstrated that M1 macrophages inhibited HaCaT cell proliferation and induced cell death, whereas high-glucose environments alone did not have the same effect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。