Global and subtype-specific modulation of cortical inhibitory neurons regulated by acetylcholine during motor learning

运动学习过程中乙酰胆碱调节皮质抑制神经元的整体和亚型特异性调节

阅读:8
作者:Chi Ren, Kailong Peng, Ruize Yang, Weikang Liu, Chang Liu, Takaki Komiyama

Abstract

Inhibitory neurons (INs) consist of distinct subtypes with unique functions. Previous studies on INs mainly focused on single brain regions, and thus it remains unclear whether the modulation of IN subtypes occurs globally across multiple regions. Here, we monitored the activity of different cortical IN subtypes at both macroscale and microscale in mice learning a lever-press task. Learning evoked a global modulation of IN subtypes throughout the cortex. The initial learning phase involved strong activation of vasoactive intestinal peptide-expressing INs (VIP-INs) and weak activation of somatostatin-expressing INs (SOM-INs). Inactivating VIP-INs increased SOM-IN activity and impaired initial learning. Concurrently, cortical cholinergic inputs from the basal forebrain were initially more active but became less engaged over learning. Manipulation of the cholinergic system impaired motor learning and differentially altered activity of IN subtypes. These results reveal that motor learning involves a global and subtype-specific modulation on cortical INs regulated by the cholinergic system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。