Efficient and reproducible identification of mismatch repair deficient colon cancer: validation of the MMR index and comparison with other predictive models

高效、可重复地识别错配修复缺陷型结肠癌:MMR 指数的验证以及与其他预测模型的比较

阅读:6
作者:Patrick Joost, Pär-Ola Bendahl, Britta Halvarsson, Eva Rambech, Mef Nilbert

Background

The identification of mismatch-repair (MMR) defective colon cancer is clinically relevant for diagnostic, prognostic and potentially also for treatment predictive purposes. Preselection of tumors for MMR analysis can be obtained with predictive models, which need to demonstrate ease of application and favorable reproducibility.

Conclusions

The MMR index is easy to apply and efficiently identifies MMR defective colon cancers with high sensitivity and specificity. The model shows stable performance with low inter-observer variability and favorable performance when compared to other MMR predictive models.

Methods

We validated the MMR index for the identification of prognostically favorable MMR deficient colon cancers and compared performance to 5 other prediction models. In total, 474 colon cancers diagnosed ≥ age 50 were evaluated with correlation between clinicopathologic variables and immunohistochemical MMR protein expression.

Results

Female sex, age ≥60 years, proximal tumor location, expanding growth pattern, lack of dirty necrosis, mucinous differentiation and presence of tumor-infiltrating lymphocytes significantly correlated with MMR deficiency. Presence of at least 4 of the MMR index factors identified MMR deficient tumors with 93% sensitivity and 76% specificity and showed favorable reproducibility with a kappa value of 0.88. The MMR index also performed favorably when compared to 5 other predictive models. Conclusions: The MMR index is easy to apply and efficiently identifies MMR defective colon cancers with high sensitivity and specificity. The model shows stable performance with low inter-observer variability and favorable performance when compared to other MMR predictive models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。